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Polarization of Electrochemistry 



Equilibrium or Not 
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Equilibrium Far from equilibrium 



Polarization of Electrode 

4 Electrochemistry, Principles, Methods, and Applications, Christopher M. A. Brett and Ana Maria Oliveira Brett, Oxford 
University Press, 1993. 
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極化產生之三主要因素 
• 活化極化→活化過電位 

 氧化還原反應克服「活化能」障礙所導致，稱為「活化極化」
(activation polarization)。此時所導致的電位損失，稱為「活
化過電位」(activation overpotential)。 

• 歐姆極化→歐姆過電位 
 電子移動必須消耗能量於電極和導線之阻抗，而離子移動必
須消耗能量於溶液之阻抗。此整體之「內阻消耗」被稱為
「歐姆極化」(ohmic polarization)。此時所導致的電位損失，
稱為「歐姆過電位」(ohmic overpotential)。 

• 質傳極化→質傳過電位 
 離子移動之擴散速率遠慢於電流之移動速率。由於離子擴散
導致之極化，被稱為「質傳極化」(Mass-transfer 
polarization)。此時所導致的電位損失，稱為「質傳過電位」
(Mass-transfer overpotential)。 
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Polarized and Non-polarizable 
Electrode 

• Ideal polarized electrode  
 It shows a very large change in potential upon the passage of an 

infinitesimal current. 

• Ideal non-polarizable electrode (or ideal depolarized electrode)  
 It is thus an electrode whose potential does not change upon passage 

of current. 
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Dashed lines show behavior of actual electrodes that approach the ideal behavior over limited 

ranges of current or potential 



Overpotential and Polarization 

7 

𝑶𝟐 + 𝟒𝑯+ + 𝟒𝒆− → 𝟐𝑯𝟐𝑶 … 𝑬𝟎 = 𝟏. 𝟐𝟑 𝑽 
 
The standard potential of oxygen reduction 
reaction is 1.23 V; However, it happens below 1.0 V. 

G. Zhang, Z.-G. Shao, W. Lu, G. Li, F. Liu, B. Yi, Electrochemistry Communications, 22 (2012) 145-148. 

𝟐𝑯𝟐𝑶 → 𝑶𝟐 + 𝟒𝑯+ + 𝟒𝒆− … 𝑬𝟎 = −𝟏. 𝟐𝟑 𝑽 
 
The standard potential of oxygen evolution 
reaction is 1.23 V; However,  it needs at least 1.48 V. 



Polarization Curve of Battery 
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Various current-voltage 

curves of batteries 

Lithium-ion battery 

discharged by various C-rate 

Ref.: http://www.mpoweruk.com/performance.htm  

http://www.mpoweruk.com/performance.htm


Heat, Polarization and Loss  
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http://www.ika.rwth-aachen.de/r2h/index.php/Introduction_to_PEFC_Operation.html  

http://www.ika.rwth-aachen.de/r2h/index.php/Introduction_to_PEFC_Operation.html
http://www.ika.rwth-aachen.de/r2h/index.php/Introduction_to_PEFC_Operation.html
http://www.ika.rwth-aachen.de/r2h/index.php/Introduction_to_PEFC_Operation.html
http://www.ika.rwth-aachen.de/r2h/index.php/Introduction_to_PEFC_Operation.html


Polarization of Water Electrolysis 
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Evolution of the I-V characteristic with NaOH electrolyte by 
stainless steel working electrode (SS304L) 

P. Mandin, R. Wuthrich and H. Roustan (2010). "Polarization curves for an alkaline water electrolysis at 

a small pin vertical electrode to produce hydrogen." AIChE Journal 56(Compendex): 2446-2454. 



Cont’d 

Electrolyte: KOH vs. NaOH 
Electrode: Stainless steel vs. 

Carbon steel vs. Graphite 
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NaOH KOH 

Stainless steel 
Carbon 
steel 

Graphite 

P. Mandin, R. Wuthrich and H. Roustan (2010). "Polarization curves for an alkaline water electrolysis at a small pin 
vertical electrode to produce hydrogen." AIChE Journal 56(Compendex): 2446-2454. 



12 

Kinetics of Electrochemistry 



Electrochemical Process  

1. Diffusion of the species to where the reaction occurs by a mass transfer 
coefficient. 

2. Rearrangement of the ionic atmosphere (10-8 s). 
3. Reorientation of the solvent dipoles (10-11 s). 
4. Alterations in the distances between the central ion and the ligands (10-14 s). 
5. Electron transfer (10-16 s). 
6. Relaxation in the inverse sense. 
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Electron Transfer at an Inert Metallic 
Electrode 
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The potential applied to the electrode alters the highest occupied 
electronic energy level, EF, facilitating (a) reduction or (b) oxidation. 

(a) (b) 



ΔG Variation 
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ΔG and Reaction Coordinate 
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If the reaction is at standard situation,  
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If n = 1, we can define: 

α: Transfer coefficient 

Rate constants are: 



Butler-Volmer Equation 
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If we set k0 is the standard rate constant, which is:  

 k0
 =  = 

Standard situation 

Butler-Volmer Equation (One-step, one-electron process) 

This equation is for one-electron process; if n is not equal 

to 1, what does the equation express? 



α: Transfer coefficient 

• α should be between 0 – 1. 

 In most systems α turns out to lie between 0.3 and 0.7 

 α can usually be approximated by 0.5 in the absence of 
actual measurements. 

• α should generally be a potential-dependent factor. 

 However, in the great majority of experiments, a appears 
to be constant, if only because the potential range over 
which kinetic data can be collected is fairly narrow. 
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Equilibrium Conditions: Exchange 
Current 
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= 0 

At equilibrium, the current is zero and the potential is Eeq. 
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Thinking: If the exchange current is higher, the reaction rate should be 

higher or lower? 

Exchange current 



Current-Overpotential Equation 
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Current-Overpotential Equation 



Exchange Current 

• Exchange current is related 
to:  
 Bulk concentration 

• [CO*(1-α) x CR*α] in the equation 

 Rate constant, k0 

• The rate constant is theoretically 
dependent on the electrode 
type and the solution and 
independent on the 
concentration and the potential. 
(See right table.) 
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Ref.: http://www.scielo.br/scielo.php?pid=S0100-40422005000600023&script=sci_arttext  

H2  2H+ + 2e 

http://www.scielo.br/scielo.php?pid=S0100-40422005000600023&script=sci_arttext
http://www.scielo.br/scielo.php?pid=S0100-40422005000600023&script=sci_arttext
http://www.scielo.br/scielo.php?pid=S0100-40422005000600023&script=sci_arttext


Current-Overpotential Curve 
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Variation of Exchange Current 
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Variation of Transfer Coefficient 
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Linear Behavior, Small η 
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0 When the reaction is near equilibrium, 
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Tafel Behavior, Large η 
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Tafel Plot (I) 
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Tafel Plot (II) 
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Tafel Plot: Catalyst 

29 A.B. Anderson, Y. Cai, Calculation of the Tafel plot for H2 oxidation on Pt(100) from potential-dependent activation energies. J. 
Phys. Chem. B, 108 (2004) 19917-19920. 



Tafel Plot of Corrosion 
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• For the corrosion, the Tafel curve 
can be expressed by: 

Oxidation reaction (Anode) 

𝜼 = 𝒃𝑨 𝐥𝐨𝐠
𝒊

𝒊𝟎
= 𝒃𝑨 𝐥𝐨𝐠

𝒊

𝒊𝒄𝒐𝒓𝒓
 

 Reduction reaction (Cathode) 

𝜼 = −𝒃𝑪 𝐥𝐨𝐠
𝒊

𝒊𝟎
= −𝒃𝐶 𝐥𝐨𝐠

𝒊

𝒊𝒄𝒐𝒓𝒓
 

 

 

𝐥𝐨𝐠 𝒊 

𝑬 

𝒊𝒄𝒐𝒓𝒓 

𝑬𝒄𝒐𝒓𝒓  
(𝜼 = 𝟎) 

Note:  
𝜂 = 𝐸 − 𝐸𝑒𝑞 = 𝐸 − 𝐸𝑐𝑜𝑟𝑟 



Theory of Tafel Plot of Corrosion 

• Solution species 
𝒁+ + 𝒆− ⇄ 𝒁 

• Metal species 
𝑴+ + 𝒆− ⇄ 𝑴 

• Metal corrosion in solution 
𝑴 + 𝒁+ → 𝑴+ + 𝒁 

• At the equilibrium of corrosion 
potential, 𝑬𝒄𝒐𝒓𝒓 

𝒊𝒄𝒐𝒓𝒓 = 𝒊𝑹,𝒁 = 𝒊𝑶,𝑴 
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𝐥𝐨𝐠 𝒊 

𝑬 

𝑬𝒆𝒒,𝒁 

𝑬𝒆𝒒,𝑴 

𝑬𝒄𝒐𝒓𝒓 

𝒊𝒄𝒐𝒓𝒓 

𝒊𝑶,𝒁 

𝒊𝑹,𝒁 

𝒊𝑶,𝑴 

𝒊𝑹,𝑴 



Cont’d 

• 𝒊𝑴𝑬𝑨𝑺 = 𝒊𝑶,𝑴 − 𝒊𝑹,𝒁 … (𝟏) 

• 𝜼 = 𝒃𝑨 𝐥𝐨𝐠
𝒊𝑶,𝑴

𝒊𝒄𝒐𝒓𝒓
… (𝟐) 

• 𝜼 = −𝒃𝑪 𝐥𝐨𝐠
𝒊𝑹,𝒁

𝒊𝒄𝒐𝒓𝒓
… (𝟑) 

• (2)&(3)⇒(1)  

• 𝒊𝑴𝑬𝑨𝑺 = 𝒊𝒄𝒐𝒓𝒓 𝟏𝟎
𝜼

𝒃𝑨 − 𝟏𝟎
−

𝜼

𝒃𝑪 … (𝟒) 

• 𝟏𝟎𝒙 = 𝟏 + 𝟐. 𝟑𝟎𝟑𝒙 +
𝟐.𝟑𝟎𝟑𝒙 𝟐

𝟐!
+ ⋯ (𝟓) 

• (5)⇒(4) & x is very small 

• 𝒊𝑴𝑬𝑨𝑺 = 𝟐. 𝟑𝟎𝟑𝜼
𝒃𝑨+𝒃𝑪

𝒃𝑨𝒃𝑪
… (𝟔) 
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𝐥𝐨𝐠 𝒊 

𝑬 

𝑬𝒆𝒒,𝒁 

𝑬𝒆𝒒,𝑴 

𝑬𝒄𝒐𝒓𝒓 

𝒊𝒄𝒐𝒓𝒓 

𝒊𝑶,𝒁 

𝒊𝑹,𝒁 

𝒊𝑶,𝑴 

𝒊𝑹,𝑴 



Corrosion of Zn-Ni Alloy 

33 
A.-R. El-Sayed, H.S. Mohran, H.M. Abd El-Lateef, Corrosion study of zinc, nickel, and zinc-nickel alloys in alkaline solutions by Tafel 
plot and impedance techniques. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 43 (2012) 
619-632 

Materials: Zn-Ni alloy 
Solution: KOH solution 
Temperature: 298 K 



Cont’d 

34 
A.-R. El-Sayed, H.S. Mohran, H.M. Abd El-Lateef, Corrosion study of zinc, nickel, and zinc-nickel alloys in alkaline solutions by Tafel 
plot and impedance techniques. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 43 (2012) 
619-632 



Cont’d 
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Pure Zn 

Alloy IV 

Higher corrosion resistance 

𝐥𝐨𝐠 𝑰𝒄𝒐𝒓𝒓 = 𝐥𝐨𝐠 𝑨 −
𝑬𝒂

𝟐. 𝟑𝟎𝟑𝑹

𝟏

𝑻
 



Some Important Equations 

• 𝑶 + 𝒏𝒆− → 𝑹 

• Gibbs free energy: ∆𝑮 = −𝒏𝑭𝑬 

• Nernst equation: 𝑬 = 𝑬𝟎 +
𝑹𝑻

𝒏𝑭
𝒍𝒏

𝑪𝑶

𝑪𝑹
 

• Current-overpotential equation: 

𝒊 = 𝒊𝟎
𝑪𝑶 𝟎,𝒕

𝑪𝑶
∗ 𝒆−𝜶𝒇𝜼 −

𝑪𝑹 𝟎,𝒕

𝑪𝑹
∗ 𝒆 𝟏−𝜶 𝒇𝜼  

• Overpotential: 𝜼 = 𝑬 − 𝑬𝒆𝒒 

• Small η: 𝒊 = −𝒊𝟎𝒇𝜼 

• Large η : 𝒊 = 𝒊𝟎𝒆−𝜶𝒇𝜼 ⇒ 𝜼 =
𝟏

𝜶𝒇
𝒍𝒏𝒊𝟎 −

𝟏

𝜶𝒇
𝒍𝒏𝒊 (Tafel 

equation) 
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𝒇 =
𝑭

𝑹𝑻
 


